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Introduction and Motivation!

Low-boom aircraft design!
•  Exploration of a complex design space with 

contradicting environmental and performance objectives!

•  Inverse design approach leverages the natural 
decoupling in the sonic boom analysis requirements!

•  Lift tailoring can lead to configurations incapable of trim 
through traditional fuel management techniques!

•  Achieving trim after configuration is shaped for low-
boom can result in a compromised design!
!
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Introduction and Motivation!

Exploration of trim requirement!
•  Several lifting devices explored to help redistribute lift of low-boom configuration with 

minimal success!
–  Canard and strake!
–  Attempt to trade volume for lift fore of CG!
–  Can work for some configurations but not an overarching solution!
–  Can lead to structurally unacceptable configurations due to the volume trade 

necessary to maintain low-boom!

•  Approach needed to account for trim requirement early in design process!
–  Leverage sonic boom analysis decoupling and inverse design!
–  Introduce trim objective into the low-boom target generation process!
–  Drive the design concurrently to a trimmed and low-boom state!
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Description of Sonic Boom Analysis!
•  CFD analysis with Cart3D1!

–  Inviscid CFD analysis package geared toward conceptual and preliminary 
aerodynamic design!

–  Cartesian volume mesh rotated by Mach angle to align the shocks with the 
computational grid and decrease numerical dissipation!

!
•  Atmospheric Propagation with sBOOM2!

–  Solve the augmented Burgers equation!
–  Account for atmospheric losses due to nonlinearity, molecular relaxation, 

and thermo-viscous absorption!
–  Propagate pressure distribution backward in time to calculate an equivalent 

area (Ae) in the neighborhood of the configuration!
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Introduction and Motivation!

1Aftosmis, Berger, and Adomavicius, AIAA-2000-0808., 2Rallabhandi, AIAA-2011-1278.!



Formulation of Trim-Feasible Low-Boom Target!

•  Reversed Ae3 is calculated by propagating a pressure distribution backward in time to 
a region near the configuration!

•  ∆Ae is the error in classical Ae which fails to capture the three-dimensional flow 
effects associated with a real configuration!

•  Mixed-fidelity4 Ae design approach!
–  Change in ∆Ae due to minor shape deformation is relatively small!
–  Change in reversed Ae can be approximated by the change in classical Ae!
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Calculation of a surrogate axial lift distribution!

Classical Ae!
Reversed Ae!∆Ae!

3Li and Rallabhandi, 2014., 4Ordaz and Li, AIAA-2013-2660. 
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Formulation of Trim-Feasible Low-Boom Target!

•  Change in volume Ae between design iterations assumed to be small!

!
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Calculation of a surrogate axial lift distribution!

Classical Ae!
Reversed Ae!



Formulation of Trim-Feasible Low-Boom Target!

•  Change in volume Ae between design iterations assumed to be small!
•  Change in classical Ae is a result of a change in the lift component of classical Ae!
•  Change in reversed Ae is a result of a change in the lift distribution!

!
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Calculation of a surrogate axial lift distribution!

Classical Ae!
Reversed Ae!

Change due to lift!



Formulation of Trim-Feasible Low-Boom Target!

•  Change in volume Ae between design iterations assumed to be small!
•  Change in classical Ae is a result of a change in the lift component of classical Ae!
•  Change in reversed Ae is a result of a change in the lift distribution!
•  Leverage sonic boom analysis decoupling by optimizing a target Ae for low-boom!

!
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Calculation of a surrogate axial lift distribution!

Classical Ae!
Reversed Ae Target Ae!

Change due to lift!



Formulation of Trim-Feasible Low-Boom Target!

•  Change in volume Ae between design iterations assumed to be small!
•  Change in classical Ae is a result of a change in the lift component of classical Ae!
•  Change in reversed Ae is a result of a change in the lift distribution!
•  Leverage sonic boom analysis decoupling by optimizing a target Ae for low-boom!
•  Surrogate lift Ae is calculated by correcting the lift Ae of the baseline with predicted 

change in lift Ae!
•  Predicted change in lift distribution is used as an optimization objective for trim!
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Calculation of a surrogate axial lift distribution!

Classical Ae!
Target Ae!

Change due to lift!



Formulation of Trim-Feasible Low-Boom Target!

•  Assume an aircraft of high fineness ratio (i.e. pitching moment due to drag is small)!
•  Axial lift distribution calculated from surrogate lift Ae!
•  Surrogate lift Ae distribution is mapped onto the baseline configuration!
•  Longitudinal location of section centroids calculated at each equivalent distance and 

used as the moment arm to calculate CP!
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Calculation of surrogate center of pressure!

Surrogate for 
presumed design!



Target optimization process!

Formulation of Trim-Feasible Low-Boom Target!

Linked Parameters:!
L1 : Spline control points for target Ae!
L2 : Target Ae!
L3 : Propagation altitude based on end 
value of surrogate Ae due to lift!
L4 : Target Ae!
L5 : Change in surrogate CP !
L6 : Perceived loudness!

Target !
Generation!

Propagation and 
Loudness 

Calculation!

Surrogate Center 
of Pressure 
Calculation!

L2! L3!

Multi-Objective !
Optimizer!

L1! L6!

L4!

L5!
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Inputs:!
•  Baseline reversed Ae!
•  Baseline lift component of classical Ae!



Verification of Center of Pressure Sensitivity!
•  Case I. Sensitivity based on shaping of a wing-body-tail 

configuration!
−  Verify that approximated CP based only on lift 

closely matches CP based on pressure distribution!

•  Case II. Sensitivity based on shaping of a demonstrator 
concept!
−  Verify sensitivity of surrogate CP on realistic low-

boom concept !
−  Verify that shaping of the configuration to match a 

low-boom target also produces the desired shift in 
CP!

•  Case III. Practical design of a demonstrator concept!
−  Verify that a non-trimmed but low-boom feasible 

concept can be redesigned using a trim-feasible 
low-boom target!

13!

100 ft!

30 ft!

30 ft!

108 ft!

37 ft!

125 ft!



Verification of Center of Pressure Sensitivity!

Case I: Sensitivity based on shaping of a wing-body-tail configuration!
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•  Deformation consists of linear wing tip twist of -1 deg and +1 deg!
•  Observed good agreement between CP calculated from CFD surface pressure 

distribution, lift Ae, and surrogate lift Ae!
•  Maximum difference between the CP based on lift Ae and actual CP is 0.87 

percent!
•  Confirms that if contribution of drag to pitching moment is small then lift Ae 

is sufficiently accurate to predict CP!
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Verification of Center of Pressure Sensitivity!

•  Wing camber at the root midchord is varied incrementally by 0.5 ft from -1 ft to +1 ft!
•  Horizontal tail tip twist is varied incrementally by 0.5 deg from -1 deg to +1 deg with 

a fixed incidence angle!
•  Sensitivity of CP calculated with the surrogate lift Ae shows good agreement 

with sensitivity of CP calculated using CFD-based surface pressure 
distribution!
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Verification of Center of Pressure Sensitivity!

•  Initially shaped to match a low-boom target Ae in the absence of trim constraint!
•  Untrimmed CG is 7.6 ft fore of CP!
•  Unable to trim by fuel management or without major layout rearrangement!
•  Wing redesign to match new target shifts the CP within 0.3 ft of CG!
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CG = 95.3 ft!

Case III: Practical design of a demonstrator concept!

CG = 95.3 ft!



Application to Design of a Low-Boom Demonstrator!
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Application to Design of a Low-Boom Demonstrator!
Mass properties, propulsion system, and trim analysis!
•  Conceptual design methods5 used to calculate mass properties, CG, and mission 

performance!
•  Propulsion system is a semi-embedded F404-402!
•  Engine performance calculated with NPSS6 using publically available data!
•  Cruise design point!

–  Mach 1.6, altitude of 50,000 ft, and weight of 21,000 lb!
–  Most aft CG located at 84.5 ft!
–  Required forward shift in CP for trim is 1.6 ft!

18!
5Geiselhart, Ozoroski, Fenbert, Shields, and Li, AIAA-2011-465., !

6Lytle, Follen, Naiman, Evans, Veres, Owen, and Lopez, NASA TM-2000-209795!



CG 

Figure shows lift redistribution requirement!

Application to Design of a Low-Boom Demonstrator!

Generation of trim-feasible low-boom target!
•  Pareto frontier generated for PLdB and change 

surrogate CP using NSGA-II7 optimizer in 
ModelCenter8!

•  Altitude is allowed to vary to expand the design 
space!

•  A CP margin is used to account for uncertainty 
in weight calculation!

•  Selected trim-feasible target !
−  Produces a 65.9 PLdB ground signature 

with a predicted forward shift in CP of 4.2 ft!
−  Requires a cruise altitude of 51,700 ft!
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Application to Design of a Low-Boom Demonstrator!

Lift tailoring used to match new trim-feasible 
target!
•  Adjusted angle of attack of baseline 

configuration to meet CL at new cruise altitude!
•  Implemented wing camber parameterization 

scheme with 15 design variables (5 span and 
3 chord locations)!

•  Used H-tail incidence angle to control aft lift!
•  Performed interactive design using mixed-

fidelity approach to match the target Ae !
•  Used inboard wing sections to control the 

required lift increase fore of the CG!
•  Used outboard wing sections to correct aft Ae 

deviation!
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Application to Design of a Low-Boom Demonstrator!

Comparison of surface pressure distribution!

Design (Shaped Baseline) – Upper Surface!

Baseline – Upper Surface!

Baseline – Lower Surface!

Design (Shaped Baseline) – Lower Surface!

Baseline CP!

Design CP!
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Summary!
•  Demonstrated a low-boom target generation approach that accounts for trim 

requirement!
–  Based on mixed-fidelity design approach!
–  CP calculated from an approximate axial lift distribution!
–  Assume an aircraft with high fineness ratio and relatively small pitching moment 

contribution from drag force!
•  Provided three numerical cases that verify the accuracy of the sensitivity for the 

approximated CP!
•  Demonstrated the trim-feasible target generation approach for the early conceptual 

design of a low-boom demonstrator concept!
!
Significance!
•  Provide new understanding of the design space, design feasibility, and flight conditions 

(i.e. altitude) required to achieve a trimmed low-boom aircraft!
•  Avoid costly design compromises needed to achieve trim of an aircraft initially designed 

strictly for low-boom!
!
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Design Evolution!

T-tail, S-duct F404, and 125 ft !
•  Redesign of 140 ft configuration to reduce size!
•  Replaced F100 engine in 140 ft concept with 

F404!
•  Inlet shortened to reduce complexity and 

efficiency losses!
•  Successfully trimmed and shaped this 

configuration close to a low-boom target !
T-tail, S-duct F404, and 108 ft !
•  Redesign of 125 ft configuration to further 

reduce size!
•  Successfully trimmed and shaped this 

configuration close to a low-boom target with 
65.9 PLdB!

T-tail, S-duct F404, 108 ft!

T-tail, S-duct F404, 125 ft!



Generation of Trim-Feasible Low-Boom Target!

Incorporate trim requirement into the low-boom 
target generation process!
•  Based on mixed-fidelity* Ae design approach.!
•  Provide an approximation of CP for an aircraft 

configuration with a reversed Ae matching a low-boom 
Ae target.!

•  Provide new understanding of the design space, design 
feasibility, and cruise flight conditions (i.e., altitude) to 
achieve a trimmed low-boom aircraft.!

•  Avoid costly design compromises needed to achieve 
trim of an aircraft initially designed strictly for low-boom.!

!
Target optimization process!
!
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Linked Parameters:!
L1 : Spline control points for target Ae!
L2 : Target Ae!
L3 : Propagation altitude based on 
end value of surrogate Ae due to lift!
L4 : Target Ae!
L5 : Change in surrogate CP !
L6 : Perceived loudness!
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Generation!

Propagation and 
Loudness 

Calculation!

Surrogate Center 
of Pressure 
Calculation!

L2! L3!
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Generation of Trim-Feasible Low-Boom Target!

Application of trim-feasible target generation to T-tail, 
S-duct F404, 110 ft concept!
•  Initial aerodynamic and boom analysis of baseline 

conducted at 50,000 ft!
•  CP calculated with Cart3D to be X=86.1 ft!
•  Low-fidelity aft most CG (X=84.5 ft) calculated to 

determine required shift in CP for trim!
•  Pareto frontier generated for PLdB and surrogate CP 

using NSGA-II optimizer in ModelCenter!
•  Selected low-boom target produces a 65.9 PLdB 

signature with a 4.2 ft forward shift in CP!
•  A CP margin is used to account for uncertainty in weight 

calculation!
•  Trim-feasible target requires cruise altitude of 51,700 ft!
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Outline!

•  Introduction and motivation!
–  Trim Problem in Low-Boom Design!

•  Approach, significance, and numerical results!
•  Formulation of trim-feasible low-boom targets!

–  Calculation of surrogate axial lift distribution!
–  Calculation of surrogate center of pressure!
–  Optimization process!

•  Verification of center of pressure sensitivity!
–  Sensitivity based on shaping of a wing-body-tail configuration!
–  Sensitivity based on shaping of a demonstrator concept!
–  Practical design of a demonstrator concept!

•  Conceptual design of a low-boom demonstrator!
–  Description of sonic boom analysis!
–  Description of baseline configuration!
–  Mass properties, propulsion system, and trim analysis!
–  Generation of trim-feasible target!
–  Description of low-boom design and trim process!

•  Summary!
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Introduction to Trim Problem in Low-Boom Design!

!
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•  Classical equivalent area distribution!
!



Approach, Significance, and Numerical Results!

Approach!
•  Introduce a trim objective into the low-boom target generation process by 

using a CP based on an approximation of Ae due to lift for a presumed 
design!

Significance!
•  Provide new understanding of the design space, design feasibility, and 

cruise flight conditions (i.e., altitude) required to achieve a trimmed low-
boom aircraft!

•  Avoid costly design compromises needed to achieve trim of an aircraft 
initially designed strictly for low-boom!

!
Numerical Results!
•  Verification of proposed approach conducted through numerical 

experiments !
•  Application to early conceptual design of low-boom demonstrator!
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Introduction and Motivation!

!
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•  Engine installation introduces volume requirement that results in an Ae 
distribution “bump” that is difficult to overcome for low-boom!

•  Embedded engine installation alleviates problem at the cost of 
integration complexity!

!



Introduction and Motivation!

!
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•  Engine installation introduces volume requirement that results in an Ae 
distribution “bump” that is difficult to overcome for low-boom!

•  Embedded engine installation alleviates problem at the cost of 
integration complexity!

!

Target Ae!



Introduction and Motivation!

!
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•  Engine installation introduces volume requirement that results in an Ae 
distribution “bump” that is difficult to overcome for low-boom!

•  Embedded engine installation alleviates problem at the cost of 
integration complexity!

•  Deficit in Ae aft of engine is corrected through addition of volume or lift!
•  Redistribution of lift aft of CG is unfavorable for trim but necessary for 

low-boom design!
!

Target Ae!



Formulation of Trim-Feasible Low-Boom Target!

•  Mixed-fidelity2 Ae design approach!
–  Change in reversed Ae can be approximated by the change in classical Ae!

•  Change in volume Ae between design iterations is assumed to be small and reversed 
Ae of design is set equal to target Ae!

•  Surrogate lift Ae for the design is scaled based on ∆Ae of baseline configuration!
!
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Calculation of a surrogate axial lift distribution!

1Li and Rallabhandi, 2014. , 2Ordaz and Li, AIAA-2013-2660.!

Classical Ae!
Reversed Ae!∆Ae!



Conceptual Design of a Low-Boom Demonstrator!

36!
108 ft!

30 ft!

Description of baseline configuration!
•  Single semi-embedded engine!
•  T-tail empennage!
•  T-38 cockpit!

23 ft!

13 deg!


